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The high-Reynolds-number axisymmetric wake behind a disk has been studied from
x/D =30 to x/D = 150 using the proper orthogonal decomposition (POD) applied to
measurements of the streamwise fluctuating velocity. It was found that the energetic
structure of the axisymmetric wake can very efficiently be described in terms of POD
modes. The first radial (or lowest-order) POD mode has 56 % of the energy. Two
major features dominate the eigenspectra, manifested as two major peaks. The first
peak is an azimuthal mode-1 peak at a frequency corresponding to the Strouhal
number of the near wake. The second is an azimuthal mode-2 peak at near-zero
frequency. The mode-1 peak dies out faster than the mode-2 peak, so that the far
wake is dominated by the latter.

This evolution from azimuthal mode-1 dominance in the near wake to mode-2
dominance in the far wake corresponds closely to the approach to equilibrium
similarity. Once azimuthal mode-2 becomes equally important as azimuthal mode-1
(after x/D =30 or x/θ = 110), the ratio of turbulence intensity to centreline velocity
deficit is constant, the mean deficit and turbulence intensity collapse in similarity
variables, and the wake grows as x1/3.

1. Introduction
The structure of the three-dimensional wake was perhaps first studied by

Marshall & Stanton (1931). They presented photographs of wakes behind circular
disks in water. The dye trace revealed an unsteady pattern when the Reynolds
number based on the free-stream velocity and disk diameter, Re, exceeded about
200. They also concluded that there was a periodic shedding of ring vortices. The
sphere wake was also studied by flow visualization in a water tank by Möller (1938),
who found a spiral vortex in the wake in a certain range of Reynolds numbers.

Flow visualization experiments were performed on low-Reynolds-number wakes
by Magarvey & Bishop (1961) who studied falling drops up to Re = 2500. They
used dye visualization techniques to study the vortex structure of the wake, and
attempted to describe the mechanisms of transition and to provide limits for when
the flow undergoes transition from laminar to turbulent flow. This study was followed
by Magarvey & MacLatchy (1965), who studied falling spheres for Re < 500, and
attempted to describe the manner in which vortices are released into the free stream.
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The vortex structure for a sphere wake at a higher Re was studied by Pao &
Kao (1977). They investigated wakes with Re up to 2 × 104. The main findings
were that without stratification, vorticity was shed three-dimensionally, and that
stable stratification resulted in the wake collapsing. Based on their observations, they
modelled the vortex configuration in the wake.

The sphere wake was later studied by Taneda (1978), who used the surface oil-flow
method, smoke visualization and a tuft-grid to visualize the flow for Re up to 106. He
showed evidence that the wake performed a wave-like motion up to Re = 3.8 × 105,
and that it forms a pair of streamwise vortices at higher values of Re.

An experimental and analytical investigation of the stability of the axisymmetric
wake was made by Sato & Okada (1966), who studied a slender axisymmetric body of
revolution. Analytically, they applied the criterion of Batchelor & Gill (1962) to their
laminar wake velocity profile, and concluded that according to this criterion, azimuthal
modes 1 and 2 could possibly be unstable. They were not able to numerically find
a solution for mode-2, and their experimental data were found to be in agreement
with mode-1 as the only unstable mode. The stability of the axisymmetric wake was
also investigated theoretically by Monkewitz (1988), who expanded previous studies
by investigating a family of wake velocity profiles. He confirmed previous conclusions
that azimuthal mode 1 was the most unstable, and in fact the only one that can
trigger absolute instability of this flow.

Numerically, the transition was studied by Kim & Pearlstein (1990), who studied
linear stability using a spectral technique to create a base flow that was disturbed
by axisymmetric and non-axisymmetric disturbances. Their main finding was that
azimuthal mode 1 was the most unstable. This was followed up by Natarajan &
Acrivos (1993), who used finite-element methods to numerically study the transitional
stages of spheres and disks. They did not agree with Kim & Pearlstein (1990) on the
manner in which the wake passes through the initial stages of transition, but they
confirmed the conclusion that mode-1 was the most unstable. This was also found
by Tomboulides & Orszag (2000) as well as by Ghidersa & Dušek (2000).

The temporal linear parallel stability theory of Batchelor & Gill (1962) has
recently been re-visited by George, Johansson & Gamard (2002), who found that
the conclusion of Batchelor & Gill (1962) that azimuthal mode-1 is the only possible
unstable mode directly related to the particular choice of the mean velocity profile.
Indeed, the profile selected by Batchelor & Gill (1962) only allows mode 1 to be
unstable, but the same analysis applied on a more realistic profile for the far jet or
wake reveals that azimuthal modes 0, 1, and 2 can be unstable.

Johnson & Patel (1999) investigated the flow behind a sphere at low Reynolds
number numerically and experimentally. They proposed a symmetry-breaking
mechanism to advance the basic understanding of the steady, non axisymmetric
regime between Re =210 and 270. At Re =300, a highly organized periodic flow was
found that was dominated by vortex shedding.

The large-scale, ‘coherent’ features of this flow have not only been studied using
flow visualization, but also by means of phase averaging and conditional sampling
techniques (Lee & Bearman 1992; Miau et al. 1997; Perry & Lim 1978; Perry &
Watmuff 1981). Most interestingly in the context of this paper, Roberts (1973), and
later Fuchs, Mercker & Michel (1979) used two hot wires to measure cross-spectra
at a single radius of the near wake. Fuchs et al. (1979) varied the angular separation
of the probes and were able to decompose the cross-spectra into Fourier modes. The
azimuthal modal content was then studied at the frequencies that were found to be
eventful. At x/D =9, they found a strong azimuthal mode-1 peak at a frequency
corresponding to the vortex shedding frequency, but also a peak for mode-2 at very
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low frequencies. The mode-1 peak was clearly dominant. Berger, Scholz & Schumm
(1990) also conducted a similar investigation, and reported a dominant mode-1 peak.
They did not mention mode-2, even though it is clearly present in their results.

Subsequently, Cannon, Champagne & Glezer (1993) investigated the axisymmetric
wake, in part by means of flow visualization. They showed that the wakes from
five different wake generators (sphere, disk, and three screens of different porosity)
behaved very differently. They also performed an azimuthal decomposition of the
velocity field at a fixed radius of the wake at x/θ = 105 for the disk and one of
the screens, and concluded that azimuthal mode-1 was the dominating feature. They
further suggested this might be connected to the vortical structures seen in the flow
visualization photographs. They also noted that these vortical structures were still
present at considerable downstream distances.

The proper orthogonal decomposition (POD) is in essence a structured way of
organizing the azimuthally transformed cross-spectra. Originally introduced to the
field of turbulence by Lumley (1967), the POD has been applied to many flows. One
recent example is to the plane mixing layer by Bonnet et al. (1998), where different
techniques of eddy structure identification methods were compared. This role of the
POD was further discussed in detail by Delville et al. (1999). The ‘slice’ version
of the POD technique was first applied to the jet mixing layer by Glauser (1987),
Glauser & George (1987), Citriniti & George (2000) and Jung, Gamard & George
(2004) and to the far jet by Gamard et al. (2002) and Gamard, Jung & George (2004).
The last three are of special interest, since in many ways their findings parallel the
results of this paper.

Johansson, George & Woodward (2002) recently investigated the near wake of a
disk (to x/D = 50) using the ‘slice’ POD technique. It was found that azimuthal mode-1
dominated the eigenspectra until x/D = 10. This was not surprising in view of the
many earlier investigations. After this position, however, the magnitude of both modes
decreased, but azimuthal mode-1 fell much more rapidly than azimuthal mode-2. They
were equally important at x/D = 30, after which the dominance was taken over by
mode-2. The emergence of and eventual dominance of mode-2 was not expected.
No theories had predicted this, nor had azimuthal mode-2 ever been observed to
be of significance experimentally. Similar behaviour was observed, however, almost
simultaneously in the high-Reynolds-number axisymmetric jet by Gamard et al. (2002)
and subsequently in the low-Reynolds-number DNS of the same flow (Freund &
Colonius 2002).

Our previous experiments (Johansson et al. 2002) were carried out in the Chalmers
wind tunnel. In view of the surprising nature of the results and their theoretical
implications, it was deemed highly desirable to repeat the experiments in a longer
facility of superior flow quality. The results reported here extend those of the earlier
study downstream a factor of three. Also several additional studies were made to
evaluate the effects of array coverage, number of probes, and the manner in which
the disk is suspended in the flow. These are included in Appendix A.

2. Experimental setup
The experiment was performed in the MTL wind tunnel at the Royal University of

Technology (KTH) in Stockholm, Sweden. The experimental setup and single point
flow characterization are described in Part 1 (Johansson & George 2006). Detailed
characteristics of the tunnel can be found in Johansson (1992). Here, only the issues
directly related to the POD are discussed herein.



390 P. B. V. Johansson and W. K. George

∆θ

0

8

9

10

11

12

13

14

7

6

5

4

3

2

1

Figure 1. Map of traverse scheme, shown in increments of �θ = 30◦. Our experiment
had �θ = 15◦.

2.1. Disk suspension

The disk used in the experiments had a diameter of 20 mm, was made of acrylic
and was suspended with three pairs of wires, each of diameter 0.2 mm. The disk
was placed 1 m into the measuring section to allow probe calibration upstream of
the disk. Previous experiments reported by Johansson et al. (2002) used four support
wires instead of three, and a discussion about differences in the final result is found
in Appendix B. There were none observed.

2.2. Spatial resolution

The arrays were used in the same manner as Glauser & George (1987) and Johansson
et al. (2002) to obtain the two-point velocity cross-spectra for all combinations of
locations shown in figure 1. The measurement grid of 7 × 7 was chosen following
Glauser & George (1992), so as to provide the minimal resolution to apply the POD.
In order to avoid spatial aliasing, the number of azimuthal measurement positions
must be greater than the number of modes needed to describe the energy in the flow.
Similar considerations apply in the azimuthal direction where the number of angular
increments must be greater than twice the number of azimuthal modes required (since
these eigenfunctions are in general complex), which for this experiment was estimated
as 12.

The maximum radius of the rakes is also important, and must span enough of
the flow so that the POD results are independent of it. Since the rake is fixed but
the wake grows, the relative coverage varies downstream. Appendix A contains an
evaluation of the effects of varying coverage on the results reported below. The effect
is very small for the range of variation in these experiments.

The upper array of probes was movable, and traversed from a 15◦ separation up to
180◦ with 15◦ increments in �θ , see figure 1. Each hot-wire probe is numbered and
marked by a circle. The angular separation �θ = 90◦ could not be measured directly,
since the movable probe rake caught the wake of the suspending wires. Instead,
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measurements at the opposite position 270◦ were used. In all, half the cross-section
of the wake at a fixed downstream position was scanned, and pairs of instantaneous
velocity cross-spectra were computed for a fixed angle separation. Note that the cross-
spectra corresponding to the remaining half-plane were available from the azimuthal
symmetry of the flow, which was in turn verified through the extensive tests reported
in Part 1.

3. Proper orthogonal decomposition
3.1. An overview of the POD

At the core of the theoretical and experimental application of the POD is the
replacement of the instantaneous random velocity by deterministic functions which
have maximal projection on it. These deterministic functions (or eigenfunctions) are
obtained either analytically or empirically from the resulting integral equation, the
kernel of which is the two-point correlation of the velocity itself. The original field
can be recovered by summing together (or integrating over) the contributions of
each eigenfunction and its random coefficient, the latter determined by projecting
each eigenfunction onto the instantaneous field (exactly like the determination of
coefficients in ordinary Fourier analysis). Note that this projection and reconstruction
requires that all points be measured simultaneously, which was not possible in this
experiment. Thus only the eigenspectra and eigenvectors can be produced using rakes
of probes as employed herein.

The turbulent axisymmetric wake is both stationary in time and homogeneous and
periodic in the azimuthal direction. The POD integral equations can be immediately
solved in these directions to yield Fourier modes, continuous in temporal frequency,
f , and discrete in azimuthal mode number, m (George 1988, 1999). The streamwise
direction is problematical, since it is neither homogenous nor of finite total energy.
Hence in the absence of other considerations (like similarity), the eigenfunctions will
be determined by how the domain is truncated. This problem is avoided in this study
by only applying the POD to cross-sections of the flow, and treating the streamwise
position, x, as a parameter. This particular version of the POD is sometimes called
the ‘slice’ POD. The methodology applied here is identical to one of those applied to
the axisymmetric jet by Jung et al. (2004) (see especially the appendices) and Gamard
et al. (2004); the reader is referred to those papers for the details.

3.2. This application

If only the streamwise velocity component at a fixed downstream location, say x, is
considered, the following integral equation(s) must be solved:

∫ S

0

Rx,x(m, f, r, r ′; x)ψ (n)(m, f, r ′; x)r ′ dr ′ = λ(n)(m, f ; x)ψ (n)(m, f, r; x) (3.1)

where S is the limit of the domain, Rx,x(m, f, r, r ′; x) is the two-point velocity
correlation Fourier transformed in time and expanded in Fourier series in the
azimuthal direction, ψ (n)(m, f, r; x) are the eigenfunctions, and λ(n)(m, f ; x) the
corresponding eigenspectra. The eigenspectra, λ(n)(m, f ; x), are representations of how
the energy is distributed as a function of azimuthal mode number, m, and frequency,
f , at a given downstream position, x. Therefore their downstream evolution shows
how the main characteristics of the streamwise component of the turbulent kinetic
energy evolve. The eigenfunctions, ψ (n)(m, f, r; x), are the basis functions for the flow.



392 P. B. V. Johansson and W. K. George

It is important to first discuss what the variable f means, or more precisely, what
it does not mean. Experimentally it is the frequency (or temporal variation) observed
by the measuring apparatus. Its interpretation as space or time is complicated by the
fact that the turbulence is being convected by the probes while it is also evolving
in time. The so-called ‘Taylor’s frozen field hypothesis’ assumes that convection
dominates the temporal evolution, so that temporal variations can be interpreted as
spatial variations. For the wake where u′/U < 10 %, Taylor’s hypothesis is certainly
valid, at least for all but the very lowest frequencies. Thus the proper interpretation
of the frequency in this experiment, for all but the very lowest frequencies, is as
a wavenumber, k = 2πf/U , where U is the local mean velocity. Because of the
interesting problem at very low frequencies of the eigenspectra presented later in this
paper, and the questionable applicability of Taylor’s hypothesis for them, the data
have been left in terms of the primitive variable, f .

In practice, the following steps are taken to implement the POD in this experiment:
(a) Measure the instantaneous velocity at two points.
(b) Fourier transform in time and compute the cross-spectrum.
(c) Repeat step (a) and (b) for many pairs of points.
(d) Expand the cross-spectra obtained in (b) in a Fourier series in the azimuthal

direction.
(e) Solve the remaining eigenvalue problem in the radial direction, equation (3.1),

for each frequency and azimuthal mode number.
This is exactly the procedure used by Glauser & George (1987) in their jet mixing
layer study, and in an earlier version of this investigation of the axisymmetric wake
by Johansson et al. (2002). It can be contrasted with the approach used by Citriniti &
George (2000) where 138 probes were used to measure all positions simultaneously,
thereby allowing reconstruction of the instantaneous field.

Due to the cylindrical coordinate system, r ′ is present inside the integral in equation
(3.1). From a computational point of view, it is desirable to have the kernel Hermitian
symmetric (Baker 1977). This can be achieved by separating r ′ into r ′1/2 × r ′1/2,
and by multiplying the entire equation by r1/2, then redefining the kernel to be
r1/2 Rx,x(m, f, r, r ′; x) r ′1/2 and the basis function ψ (n)(m, f, r; x) r1/2. The only effect
of this operation is to simplify the computation, and there is no effect on the result.

The general symmetry properties of axisymmetric shear flows are treated in Gamard
et al. (2004). In Appendix C, the specific properties of the kernel Rx,x for the
axisymmetric wake are presented. The results can be briefly summarized as follows:
the eigenspectra, λ(n)(m, f ; x) are the same in all four quadrants, i.e. quadrant II
(m > 0, f < 0), quadrant III (m < 0, f < 0), and quadrant IV (m < 0, f > 0) are the
same as quadrant I (m > 0, f > 0). The eigenfunctions differ slightly in that they are
the same in quadrants I and IV, while in I and III they are complex conjugates,
as they are in quadrants II and IV. Because of this, only data for m > 0, f > 0 are
presented below.

4. POD results: eigenvalues
The distribution of the resolved energy in the POD modes is summarized in table 1.

After x/D ≈ 50, the first (radial) POD mode accounts for about 56 % of the total
resolved energy, the second for about 19 %, the third for about 10 %, and the rest the
remainder. Clearly the lowest-order POD mode dominates the energetics of the flow.
This was expected from the Hilbert–Schmidt theory which applies to this direction,
and produces ordered and proper results (the lowest order has the most energy, the
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λ(n)

Energy

x/D n = 1 n= 2 n= 3 n= 4 n= 5 n= 6 n= 7 (10−5 m2 s−2)

30 63.1 17.6 10.4 5.6 2.3 0.68 0.3 22.649
50 59.6 17.2 10.1 6.0 3.8 2.2 1.1 16.114
70 57.4 17.5 10.2 6.2 4.3 2.9 1.6 12.694
90 55.9 18.4 10.3 6.3 4.4 3.0 1.6 11.020

110 55.9 18.8 10.5 6.1 4.3 2.8 1.6 9.4162
130 56.7 18.6 10.4 6.0 4.0 2.7 1.5 8.2688
150 56.7 19.1 10.2 6.0 4.0 2.6 1.3 7.1374

Table 1. Relative percentage per POD mode number, and total turbulent kinetic
energy resolved.

next the next most, etc.). For the remainder of this paper, it is this lowest-order POD
mode (n= 1) and its associated eigenspectrum, λ(1)(m, f ; x), which will receive most
of the attention.

4.1. The eigenspectra as functions of m and f

Figure 2 shows three-dimensional plots of the first eigenspectrum, λ(1)(m, f ; x), for
the disk wake at x/D = 30, 50, 70, 90, 110, 130 and 150. The most striking feature
is the clear separation of the frequency content of the various modes. Only mode-1
has a peak at a non-zero frequency. The other eigenspectra (of which mode-2 is
predominant) all resemble the usual broadband one-dimensional spectra of turbulence
which peak at zero frequency (usually due to aliasing from the unresolved directions).
The eigenspectra have not been normalized, so their heights decay downstream as
the wake itself decays. But even from just these seven plots it is obvious that mode-1
dies more quickly than the other modes, and especially mode-2. In fact, the reason
for the behaviour of the normalized azimuthal mode number plots below (figure 7) is
clearly not that mode-2 is increasing its contribution, but that mode-1 is fading more
rapidly.

This can be seen in another way as illustrated in figure 3. The value of λ(1)(m, f ; x)
for which it has a local maximum is plotted as a function of downstream distance for
each of azimuthal modes 0, 1, and 2. Clearly azimuthal mode-1 is dying out faster
than the others, at least for the first 100 or so diameters downstream.

The downstream evolution of the azimuthal modes can be seen even more clearly in
figure 4. Here, slices of the surface plots in figure 2 are shown for fixed azimuthal mode
numbers m =0, 1, and 2 as a function of frequency. As in figure 2, the eigenspectra
have not been normalized.

Figure 5 shows plots of the total energy and azimuthal mode-1 alone as a function
of frequency for the same downstream positions. Most striking is that the peak
frequency of the band which contains most of the energy for azimuthal mode-1 does
not evolve downstream, but is fixed. Moreover its contribution to the total energy is
clearly diminishing downstream, as noted above. Thus the primary contribution of
azimuthal mode-1 clearly does not scale in local shear layer variables, but is instead
determined only by the Strouhal number of the near wake. It seems apparent that
the primary contribution to azimuthal mode-1 has been convected in from the near
wake, and is virtually independent of the local shear layer of the wake.

By contrast, the behaviour of azimuthal mode-2 is quite different. Figure 6 shows
azimuthal mode-2 normalized by the energy remaining after the energy from azimuthal
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Figure 2. Eigenspectrum, λ(1)(m, f ; x), as function of azimuthal mode number, m, and
frequency, f , at different positions: (a) x/D =30, (b) 50, (c) 70, (d) 90, (e) 110, (f ) 130,
and (g) 150.
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mode-1 is removed. These data have been plotted as wavenumber spectra using
Taylor’s frozen field hypothesis. Note the remarkable ‘notch’ in azimuthal mode-2
(all the way to zero) for the position closest to the disk at exactly the frequency
where azimuthal mode-1 is dominant. Clearly azimuthal mode-1 is suppressing the
development of azimuthal mode-2 at the dominant frequency. As the wake develops
downstream, this notch fills in, and except for the very lowest wavenumbers (for
which Taylor’s hypothesis is of doubtful validity), these data collapse very well in
shear layer variables. Thus, once the contribution of azimuthal mode-1 has been
removed, the rest of the turbulence behaves exactly as might be expected from an
equilibrium similarity wake (see George 1989 or Johansson, George & Gourlay 2003).
This is certainly not the case if azimuthal mode-1 is not removed, which explains
the frustrations of many authors in trying to explain their measurements for this
flow.

4.2. Eigenvalues integrated over frequency

The eigenspectra can be integrated over frequency, f , to obtain the distribution of
energy with only the azimuthal mode number, m. If this is normalized by the total
energy at the cross-section the result is

ξ (1)(m; x) =

∫ ∞

0

λ(1)(m, f ; x) df

M∑
m=0

∫ ∞

0

λ(1)(m, f ; x) df

(4.1)

where M is the highest resolved azimuthal mode. Figure 7 shows the evolution of the
eigenspectra integrated over frequency as a function of the azimuthal mode number.
For the near wake, at x/D = 10, azimuthal mode-1 dominates, exactly as reported by
others (Fuchs et al. 1979; Berger et al. 1990). But by x/D = 30, the energy in azimuthal
mode-2 is nearly equal to that in azimuthal mode-1. By x/D = 50, azimuthal mode-2
dominates, as it does for all positions downstream. The difference between modes 0
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Figure 4. Slices of the eigenspectrum, λ(1)(m, f ; x), as function of azimuthal mode number,
m, and frequency, f , at different positions: (a) x/D = 30, (b) 50, (c) 70, (d) 90, (e) 110, (f ) 130,
and (g) 150.
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Figure 6. Mode-2 at x/D = 30, 50, 90 and 150, normalized by the energy remaining after the
energy from mode-1 is removed. These data have been plotted as wavenumber spectra using
Taylor’s hypothesis.

and 1 far downstream is too small to be certain which is the largest, since the slight
variation may be due to the differing areas covered by the probe arrays as the wake
grows (as discussed in Appendix A).
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Figure 7. Eigenspectrum integrated over frequency (as defined in equation (4.1)) as a function
of azimuthal mode number (m) at different positions: (a) x/D = 30, (b) 50, (c) 70, (d) 90,
(e) 110, (f ) 130, and (g) 150.
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Figure 8. Eigenfunctions for the first POD mode, r1/2ψ (1)(m, f, r; x), and the first three
azimuthal modes (m= 0, 1, 2) vs. r/δ∗.

5. POD results: eigenfunctions
The eigenfunctions, ψ (n)(m, f, r; x), can be viewed as being the basic functions or

the building blocks of the flow and the eigenvalues indicate which eigenfunctions
are most important in terms of kinetic energy. The larger the eigenvalue, the more
important is the associated eigenfunction. As is clear from the results presented in
§ 4, almost all activity was found for azimuthal modes 0, 1 and 2. Hence only the
corresponding eigenfunctions are treated here. For the eigenvalues, for each azimuthal
mode, an eigenfunction is found for each frequency. This in general complicates the
display of results, but surprisingly the shapes of the eigenfunctions were found to be
almost completely independent of frequency.

Due to the axisymmetric configuration in this application it is most convenient to
work with ψ (n)(m, f, r; x) r1/2 since the integral equation (3.1) then becomes Hermitian
symmetric as discussed in § 3. Thus all figures display ψ (n)(m, f, r; x) r1/2.

The eigenfunctions for the first POD mode and azimuthal modes 0, 1, and 2 are
shown in figure 8. The eigenfunctions are in general complex, but it was found that
the imaginary part was negligible. Furthermore, there is one eigenfunction for each
frequency (f ), azimuthal mode number (m), and POD mode number (n). It was found
that there was very little variation with frequency, so all results were averaged over
frequency. A virtually identical result would have been found if one arbitrarily chosen
frequency, but averaging was applied to avoid selecting a particular frequency.
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In Part 1 scaling properties were determined and presented; so here the radial
coordinate is scaled with the transverse length scale δ∗. Since the probe rake used in
the experiment was fixed and the wake grows it is clear from figure 8 that different
parts of the wake are covered as the probe rake was traversed downstream. At
x/D = 30 the inner part is relatively poorly resolved while the entire wake is covered.
At x/D =150 the situation is reversed with the inner part being well resolved and
the outer part of the wake located outside the probe rake. The effect of probe
array coverage on the results is discussed in Appendix A but in fact no observable
dependence of array coverage was found. This is manifested in figure 8 by remarkably
similar eigenfunctions for all downstream positions.

The experimentally obtained eigenfunctions are denoted with an asterisk. The
dashed line is a nonlinear curve fit consisting of a fourth-order polynomial times an
exponential function with a second-order polynomial in the argument. One curve was
fitted for each azimuthal mode number and for each POD mode number (n). The
curve was fitted to all downstream locations simultaneously.

For POD-mode n= 1 and for azimuthal mode m =0 it is clear from figure 8 that
the eigenfunction has a positive peak near r/δ∗ =1 and a negative peak further out
in the flow, near r/δ∗ = 2. The pattern is not the same for azimuthal modes m =1 and
2, which only exhibit a positive peak. For m =1 the peak is located between r/δ∗ = 1
and 2 and for m = 2 the peak is located further out closer to r/δ∗ = 2. This can be
interpreted as azimuthal mode m =0 being active and present in the whole cross-
section, while the actions of the higher-order azimuthal modes take place away from
the centre. This is consistent with the view that azimuthal mode m =1 is associated
with periodic vortex shedding at the Strouhal frequency, an event detectable in
ordinary power spectra only away from the centre of the wake as shown in Part 1.

For higher-order POD modes, the situation is depicted in figures 9 and 10. Figure 9
shows that for POD mode n= 2, there is a very small dependence on azimuthal
modes. In all positions downstream, every eigenfunction has one negative and one
positive peak, the first being closer to the centre of the wake. The peak location seems
to shift outwards, even though the effect is hardly noticeable, for increasing azimuthal
mode number.

Figure 10 show the eigenfunctions for POD mode n= 3. Here the situation is similar
to that for POD mode n= 2 in that it is also noticeable how similar the eigenfunctions
are for all azimuthal modes. The most distinguishing feature of the POD mode n= 3
eigenfunctions are that there are now two positive peaks and one negative peak: thus
the number of zero-crossings increases by one with increasing POD mode number,
consistent with the idea of “sequency” (R. Adrian 2003, private communication to
W. K. G.).

6. Discussion
As presented above, the modal decomposition of the turbulent axisymmetric wake

can be viewed as being composed by two major features: azimuthal modes 1 and 2.
Initially, azimuthal mode 1 dominates the modal decomposition. This mode dies out
rapidly and no longer dominates the flow after x/D = 30. Even so, it continues to be
visible in the modal decomposition for all downstream positions covered in this study.
This mode is associated with the Strouhal peak in the power spectra, presented in
Part 1. The behaviour of mode-1 is consistent with findings of Cannon et al. (1993),
who stated that this feature remains in the wake for very large downstream distances.
In their azimuthal decomposition at x/θ =105, they actually noticed mode-1 to be
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Figure 9. Eigenfunctions for the second POD mode r1/2ψ (2)(m, f, r; x), and the first three
azimuthal modes (m= 0, 1, 2) vs. r/δ∗.

the most prominent mode. But it must be noted that their decomposition was made
at a single radial position in the wake, unlike the POD applied here which takes the
whole cross-section of the flow into consideration.

One additional observation can be made from figure 3. There is a very interesting
problem presented by the lack of collapse of the spectra for azimuthal mode-2 at
very low wavenumbers (or perhaps just low frequencies). These very large scales
clearly satisfy Townsend’s idea of the large eddies. They contain about 5–10 % of the
energy and do not appear to interact with the main motion. If these data are not
normalized as wavenumbers, but simply by the energy present at all mode numbers
with mode-1 removed, they collapse without any scaling of the frequency axis at all.
So what is their role, if any? This is not at all clear at the time of writing. One
possibility is that they simply slowly twist the mean flow. If so this could account for
the remarkably high local turbulence intensity for this flow for which at the centreline
u′/(U∞ − UCL) ≈ 110 %. In effect, the mean profile could be simply moved around
by this very large and slow modulation. There is some evidence for this in the flow
visualizations of Taneda (1978) who observed wave-like behaviour of the wake. Also,
some of the azimuthally averaged instantaneous DNS profiles of Gourlay et al. (2001)
appear to be slightly off-centre, consistent with both observations above.
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Figure 10. Eigenfunctions for the third POD mode, r1/2ψ (3)(m, f, r; x), and the first three
azimuthal modes (m= 0, 1, 2) vs. r/δ∗.

It is also worth commenting on what the usual conditional sampling approaches to
coherent structures have focused on for this flow. The single most coherent energetic
motion is the transient azimuthal mode-1, and this is indeed what such studies have
yielded. But this is the least important part of the problem for the far wake, since it
is dying out and appears to be virtually independent of the rest of the turbulence.
Similar considerations apply to the jet as well where the most apparent coherent
feature of the near jet flow (mode 0) has seemingly nothing to do with the far jet’s
evolution, but is simply dying out, see Gamard et al. (2002).

Like the jet, the emergence of this mode-2 dominance also corresponds to the emer-
gence of the similarity state, particularly evident in the normalized turbulence intensity
which does not approach a constant until about x/D = 30–50. The implications of
this for studies of axisymmetric wakes are profound, since most attempts seldom
measured much beyond this point (e.g. Cannon 1991; Uberoi & Freymuth 1970) due
to the extremely low turbulence intensities of the wake, and the demands on wind
tunnel quality and test section length.

7. Conclusions
The high-Reynolds-number axisymmetric wake behind a disk has been studied

from x/D = 30 to x/D = 150 using the proper orthogonal decomposition (POD). It
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Figure 11. Eigenspectrum integrated over frequency as function of azimuthal mode number
(m) at x/D =50 for different configurations: (a) 15 hot wires, (b) 13 hot wires.

was found that the energetic structure of the axisymmetric wake can efficiently be
described in terms of a few POD modes with the first radial POD mode containing
approximately 56 % of the energy. Two features dominated the eigenspectra,
manifested as major peaks. The first peak is an azimuthal mode 1 peak at a frequency
corresponding to the Strouhal number of the wake. The second is an azimuthal mode-2
peak at near-zero frequency. The mode-1 peak dies out faster than the mode-2 peak,
so that the far wake is dominated by the latter.

This evolution from azimuthal mode-1 dominance in the near wake to mode-2
dominance in the far wake corresponds closely to the approach to equilibrium
similarity. Once mode-2 becomes equally as important as mode-1 (after x/D = 30 or
x/θ = 110), the ratio of turbulence intensity to centreline velocity deficit is constant,
the mean deficit and turbulence intensity collapse in similarity variables, and the wake
grows as x1/3.
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Appendix A. Effect of array coverage
Figure 11 shows the wake at x/D = 50 from our experiment described in the main

text, together with the data obtained with the 13-wire rake and four support wires
presented in Johansson et al. (2002). There are only very small differences, one being
that mode 0 is slightly larger for the 15-wire rake. This can be explained by the fact
that this rake covers a larger portion of the wake. However, this effect is very small.

Figure 12 shows plots of ru2 versus r for all downstream positions. The total energy
in the POD is the integral under these curves. Clearly as the rake is traversed down-
stream, progressively less and less of the total energy is included in the decomposition
(since the hot-wire rake is fixed). (This was one of the primary reasons for expanding
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Figure 13. Eigenspectrum integrated over frequency as function of azimuthal mode number
(m) at x/D = 50 for different configurations: (a) 3 pairs of support wires, (b) 4 pairs of support
wires.

from 13 to 15 wires.) The energy lost is less than 1 % at x/D =10 but perhaps as
much as 20 % at x/D = 60. As figure 7 makes clear, the evolution from an azimuthal
mode-1 peak to a peak at mode-2 takes place between x/D = 30 and 40. Beyond
x/D = 40 there is virtually no change in the eigenspectra, even though progressively
more of the energy is lost. This suggests strongly that the external energy does not
affect the eigenspectra (at least in the lower modes). This is consistent with the lack
of differences observed between the 13- and 15-wire arrays.

Appendix B. Effect of disk support wires
Figure 13 shows plots for the four- and three-wire supported rakes, obtained

using the 15-hot-wire rake at x/D = 50. The results are virtually indistinguishable,
suggesting strongly that the whatever the physical cause of the observations, it is not
a consequence of how the disk is supported in the wind tunnel.
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Appendix C. Symmetry considerations for statistically axisymmetric
wakes without swirl

Jung et al. (2004) show that the following relations are general for the 1-1
cross-spectrum of any axisymmetric flow which is statistically stationary in time,
homogeneous and periodic in the azimuthal direction, and apply here for all values
of m including m = 0:

Rx,x(x, r, r ′; − m, −f ) = Rx,x(x, r ′, r; m, f ). (C 1)

Alternatively, since the cross-correlation itself is real, it follows immediately that

Rx,x(x, r, r ′; −m, −f ) = R∗
x,x(x, r, r ′; m, f ). (C 2)

Thus the values of Rx,x in the third quadrant (m < 0, f < 0) can be found from
those in the first by simply interchanging r and r ′ of the cross-spectrum for positive
values, or by taking the complex conjugate.

Similarly

Rx,x(x, r, r ′, −m, f ) = Rx,x(x, r ′, r, m, −f ) (C 3)

and

Rx,x(x, r, r ′, −m, f ) = R∗
x,x(x, r, r ′, m, −f ) (C 4)

indicating that if the cross-spectrum is known for m < 0, f > 0 then the values for
m > 0, f < 0 can be obtained by either interchanging r and r ′ or taking the complex
conjugate, or vice versa.

Thus, stationarity in t and homogeneity in the azimuthal direction, θ , imply that the
doubly transformed cross-spectra in quadrants I (m > 0, f > 0) and III (m < 0, f < 0)
are related, and that quadrants II (m > 0, f < 0) and IV (m < 0, f > 0) are related.
There is in general no relation between quadrants I and II (or IV). Thus, in the absence
of additional information or constraints, the cross-spectrum Rx,x(x, r, r ′, m, f ) must
be specified in at least two quadrants of m and f .

For all of the wake experiments reported herein, however, it was possible to
establish from the measured cross-spectra that to within experimental error, the
following additional symmetry condition applied:

Rx,x(x; r, r ′, m, −f ) = R∗
x,x(x; r, r ′, m, f ). (C 5)

One example is shown in figure 14. Note that equation (C 5) does not apply to all
statistically axisymmetric flows and applies only to the wake (and perhaps not even
to all wakes); for example it does not apply to the axisymmetric jet, which appears
to satisfy a different condition (cf. Jung et al. 2004).

When added to the general constraints above, it is easy using the same methodology
to show that this supplies the missing condition to obtain the cross-spectra in
quadrants II, III, and IV in terms of the information in quadrant I alone. For
example, consider the eigenvalue problem posed by∫

D

Rx,x(x; r, r ′, m, −f )ψ (n)(x, r ′, m, −f )r ′ dr ′ = λ(n)(m, −f ; x)ψ (n)(x, r, m, −f ). (C 6)

Using equation (C 5) this becomes∫
D

R∗
x,x(x; r, r ′, m, f )ψ (n)(x, r ′, m, −f )r ′ dr ′ = λ(n)(m, −f ; x)ψ (n)(x, r, m, −f ). (C 7)

By taking the complex conjugate and recognizing that the λ are real, it follows
immediately that the solutions to this equation must be the same as for the original
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Figure 14. Rx,x(x, r, r ′,m, f ) for x/D = 30, m= 0, r = 1 and r ′ = 2.

problem posed by equation (3.1). Therefore the following must be true:

λ(n)(m, −f ; x) = λ(n)(m, f ; x), (C 8)

ψ∗(n)(x, r, m, −f ) = ψ (n)(x, r, m, f ). (C 9)

Thus the values in quadrant II (m > 0, f < 0) are the complex conjugates of those
in quadrant I. It is similarly easy to show that the eigenspectra must be the same
in all quadrants, while the eigenfunctions in quadrants II and III are the complex
conjugates of those in I and IV respectively. Hence only quadrant I data are shown
in the body of the paper.

Interestingly, and unlike the jet, it is also straightforward to show that equation (C 5)
implies that the two-point correlation transformed over frequency is only symmetrical
in the separation angle, ϑ , as commonly assumed. It can be reconstructed from the
Fourier series representation of Rx,x(x, r, r ′, ϑ, f ) as follows:

Bx,x(x, r, r ′, ϑ, f ) =

∞∑
m = −∞

e+imϑRx,x(x, r, r ′, m, f ) (C 10)

This can be rewritten as a sum over positive values of m only as

Bx,x(x, r, r ′, ϑ, f ) = Rx,x(x, r, r ′, 0, f )

+

∞∑
m=1

{
e+imϑRx,x(x, r, r ′, m, f ) + e−imϑRx,x(x, r, r ′, −m, f )

}
. (C 11)

From equations (C 4) and (C 5) it follows immediately that

Bx,x(x, r, r ′, ϑ, f ) = Rx,x(x, r, r ′, 0, f )

+

∞∑
m=1

{
e+imϑRx,x(x, r, r ′, m, f ) + e−imϑR∗

x,x(x, r, r ′, m, −f )
}

= Rx,x(r, r
′, 0, f ) + 2

∞∑
m=1

Rx,x(x, r, r ′, m, f ) cos mϑ. (C 12)

Clearly Bx,x(r, r
′, ϑ, f ) is an even function of ϑ , and therefore symmetrical in ϑ .
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It is not clear at the time of writing why equation (C 5) is true. Therefore in the
absence of a theoretical explanation it should be regarded as tentative. An important
clue may lie in the fact that the axisymmetric jet appears to satisfy a different
condition, suggesting that the unique character of each flow is at least reflected in
this difference, if indeed not determined by it.
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